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Predicting forest stand variables from LiDAR data 
in the Great Lakes – St. Lawrence forest of Ontario

by M. Woods1, K. Lim2 and P. Treitz3

ABSTRACT
Models were developed to predict forest stand variables for common species of the Great Lakes – St. Lawrence forest of
central Ontario, Canada from light detection and ranging (LiDAR) data. Stands that had undergone various ranges of par-
tial harvesting or initial spacing treatments from multiple geographic sites were considered. A broad forest stratification
was adopted and consisted of: (i) natural hardwoods; (ii) natural conifers; and (iii) plantation conifers. Stand top height
(R2 = 0.96, 0.98, and 0.98); average height (R2 = 0.86, 0.76, and 0.98); basal area (R2 = 0.80, 0.80, and 0.85); volume (R2 =
0.89, 0.81, and 0.91); quadratic mean diameter (R2 = 0.80, 0.68, and 0.83); and density (R2 = 0.74, 0.71, and 0.73) were
predicted from low density (i.e., 0.5 point m-2) LiDAR data for these 3 strata, respectively.

Key words: light detection and ranging, LiDAR, airborne laser scanning, forest modelling, remote sensing, forest stand
variables, Great Lakes – St. Lawrence forest

RÉSUMÉ
Des modèles ont été élaborés afin d’effectuer des prédictions sur les variables des peuplements forestiers associées aux espèces
communes des forêts des Grands Lacs et du Saint-Laurent dans le centre de l’Ontario au Canada, à partir des données de détec-
tion de la lumière et de calcul de la distance (LiDAR). Les peuplements ayant subi des coupes partielles de diverses intensités
ou des traitements préliminaires d’espacement et établis sur diverses stations géographiques ont été retenus pour fins d’étude.
Une stratification forestière générale a été mise en place et faisait référence (i) aux peuplements feuillus naturels, (ii) aux peu-
plements résineux naturels et, (iii) aux plantations de résineux. Les hauteurs maximales des peuplements (R2 = 0,96, 0,98 et
0,98); la hauteur moyenne (R2 = 0,86, 0,76 et 0,98); la surface terrière (R2 = 0,80, 0,80 et 0,85); le volume (R2 = 0,89, 0,81 et
0,91); le diamètre de la tige de surface terrière moyenne (R2 = 0,80, 0,68 et 0,83) et la densité (R2 = 0,74, 0,71 et 0,73) ont été
prédites respectivement à partir de données LiDAR à faible densité (c’est-à-dire, 0,5 point m-2) pour ces trois strates. 

Mots clés : détection de la lumière et calcul de la distance, LiDAR, numérisation par laser aéroporté, modélisation
forestière, télédétection, variables de peuplement forestier, forêt des Grands Lacs et du Saint-Laurent.
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Introduction
Evolving strategic- and operational-scale modelling activities
requires the development of natural resource inventories with
an increased spatial resolution of forest stand metrics and
detailed terrain attributes. Forest modelling trends are shift-
ing towards spatially explicit tools requiring increased accu-
racy of the location, accessibility, quantity (e.g., stand vol-
ume), and size (e.g., average piece size) to help formulate
potential scenarios to be considered in developing forest

management plans. Accurate
estimates of inventory vari-
ables at the stand level become
much more crucial when eval-
uating short- and long-term
management decisions and
alternatives with the use of
spatially explicit models.

Current forest inventories
are derived through airphoto
interpretation and photogram-
metric techniques that deter-
mine forested polygons and
assign a species list, average

height, site occupancy measure (i.e., stocking or crown clo-
sure) and a coarse estimate of age. With an interpreted height
and estimated age, stand site productivity is derived (i.e., site
class or site index). In Ontario, normal and empirical yield
table estimates for an aggregated forest community are used
to assign an average basal area and volume to a group of sim-
ilar stand conditions based on an assessment of site produc-
tivity and species composition. Today, forest management
modelling and operational planning require more accurate
and precise estimates of these inventory variables.
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Airborne light detection and ranging (LiDAR) for forest
applications has been studied since 1982 (Arp et al. 1982).
Over the past decade, improvements in global positioning
systems (GPS), inertial navigation systems (INS), computer
hardware, LiDAR processing software, and reduced acquisi-
tion costs have permitted LiDAR technology to evolve from a
research tool to operational status in forestry (Næsset 2004a,
Stephens et al. 2007). Current acquisition costs, including
classification of LiDAR points, breakline collection, deriva-
tion of digital elevation models (DEMs) and digital surface
models (DSMs), has become an operationally affordable
alternative when development of a precision inventory is con-
sidered.

Recent work in Ontario has focused on estimating forest
inventory and biophysical variables for tolerant northern
hardwoods (Lim et al. 2001, 2002, 2003; Todd et al. 2003, Lim
and Treitz 2004), boreal mixedwoods (Thomas et al. 2006,
2008) and conifer plantations (Chasmer et al. 2006). Other
international studies have also clearly demonstrated the appli-
cation of LiDAR to forest inventory (Nilsson 1996; Lefsky et
al. 1999a, b; Means et al. 1999; Holmgren 2003; Gobakken
and Næsset 2004; 2007; Hyyppä et al. 2004; Næsset 2004b;
Bollandsås and Næsset 2007; Breidenbach et al. 2007;
Stephens et al. 2007).

The objective of this study was to explore the utility of air-
borne LiDAR data to estimate stand-level forest variables,
which included stand top height (TOPHT), average height
(AVGHT), stem density (DENSITY), quadratic mean diame-
ter (QMDBH), basal area (SUMBA), and gross total volume
(SUMGTV), for Great Lakes – St. Lawrence forest species
with the goal of implementing these methods in operational
inventories. This study is unique in comparison to previous
studies in that it considers stands that have undergone various
ranges of partial harvesting, which comprise much of the for-
est management activities for the Great Lakes – St. Lawrence
forest, or initial spacing treatments, and are distributed across
multiple geographic sites.

Material and Methods
Study area
The study area consisted of multiple research forest sites
throughout central Ontario with the 2 primary sites consisting
of the Swan Lake and Petawawa Research Forests (Fig. 1).
Additional research plots, which were located in the Nipissing
Forest, are representative of other Great Lakes – St. Lawrence
forest types and silvicultural systems of central Ontario (Fig. 1).

Swan Lake Research Forest (SLRF)
The Swan Lake Research Forest is located 250 km north of
Toronto and east of Huntsville, Ontario, within Algonquin
Provincial Park. The 2000-ha site situated in Peck Township
is located at 45° 28′ N, 78° 45′ W and ranges in elevation from
412 m to 587 m above sea level (asl). This site lies on the Pre-
cambrian Shield and is characterized by rolling hills and high
rocky ridges that are separated by valleys scoured by glacia-
tion. Outwash flats, ablation moraines, and drumlinoid
deposits provide soil deposits ranging from coarse to medium
texture. The Algonquin Dome, due to its elevation, has a cli-
mate that is generally cooler and wetter than its surrounding
areas (Cole and Mallory 2005).

The site is within the Great Lakes – St. Lawrence Forest
Region and comprises mature stands of shade- and mid-

tolerant hardwoods (sugar maple [Acer saccharum Marsh.],
American beech [Fagus grandifolia Ehrh.], soft maple [Acer
rubrum L.], yellow birch [Betula alleghaniensis Britt.], iron-
wood [Ostrya virginiana (Mill.) K. Koch]), conifers (eastern
hemlock [Tsuga canadensis (L.) Carrière], white pine [Pinus
strobus L.], white spruce [Picea glauca (Moench) Voss], red
spruce [Picea rubens Sarg.], eastern larch [Larix laricina (Du
Roi) K. Koch], eastern white cedar [Thuja occidentalis L.],
balsam fir [Abies balsamea (L.) Mill.]), and minor propor-
tions of mid-tolerant and intolerant hardwoods (i.e., white
birch [Betula papyrifera Marsh.], black cherry [Prunus
serotina Ehrh.], white ash [Fraxinus americana L.], black ash
[Fraxinus nigra Marsh.], and trembling aspen [Populus
tremuloides Michx.]).

Petawawa Research Forest (PRF)
The Petawawa Research Forest (PRF) is located approxi-
mately 200 km west of Ottawa and 180 km east of North
Bay, just east of Chalk River, Ontario (46° 00′ N, 77° 26′ W).
The research forest encompasses 10 000 ha of mixed mature
natural and plantation forest that is representative of the Great
Lakes – St. Lawrence Forest Region and is characterized by
eastern white pine, red pine, trembling aspen, and white
birch. Red oak (Quercus rubra L.) dominates many poor, dry
soils. Boreal forest species from the north and shade-tolerant
hardwoods from the south exist on suitable sites.

PRF lies on the southern edge of the Precambrian Shield
with its topography strongly influenced by glaciation and
post-glacial outwashing. There are 3 types of terrains charac-
terizing the site including extensive sand plains of mostly
deltaic origin; imposing hills, shallow, sandy soils, and
bedrock outcrops; and gently rolling hills with moderately
deep, loamy sand containing numerous boulders. Elevations
range from 140 to greater than 280 m asl within the forest.
Mean annual precipitation for the research forest is around 82
cm per year. Approximately 25% of the precipitation falls as
snow. The mean annual temperature is 4.4°C. The area aver-
ages 136 growing season days with an average of 100 days
being frost-free.

Nipissing Forest (NF)
Nipissing Forest is an actively managed forest in Central
Ontario. The Crown-managed forested area of 621 000 ha is
centered on North Bay, Ontario (46° 18′ N, 79°27′ W). The
forest is characterized as one of transition between the Great
Lakes – St. Lawrence Forest Region and the Boreal Forest
Region to the north. The main forest species include white
pine, red pine, sugar maple, soft maple, red oak, yellow birch,
trembling aspen and balsam fir.

Field data
Ground reference data were collected for the 3 study sites dur-
ing the period of July 2005 and August 2006. Aside from estab-
lishing new plots for measurements, existing research plots
were also used, which resulted in a network of plots that var-
ied in shape (i.e., circular, square, and rectangular) and area
(Table 1). The minimum plot area was 400 m2. Conversely,
there were a few large plots that ranged from 0.1 to 0.5 ha.

Each plot had all trees larger than or equal to 10 cm meas-
ured for diameter at breast height (DBH) with a diameter
tape. Each tree was assessed for species, status (live or dead),
crown class (dominant, co-dominant, etc.) and visual quality.

828 NOVEMBRE/DÉCEMBRE 2008, VOL. 84, No 6 — THE FORESTRY CHRONICLE



NOVEMBER/DECEMBER 2008, VOL. 84, NO. 6 — THE FORESTRY CHRONICLE 829

Fig. 1. Project study areas in Ontario. 

Table 1. Field plots by research site and forest type

Natural Natural Plantation 
Research Site Plot area (m2) hardwoods conifers conifers Total

Swan Lake Research Forest 400 12 4 1 17
800 6 – – 6

1000 4 – – 4

Subtotal 22 4 1 27

Petawawa Research Forest 400 9 15 18 42
506 – – 1 1
675 – – 1 1

1000 – 1 4 5
1012 – – 2 2
1350 – – 1 1
2500 – 8 – 6

Subtotal 9 24 27 60

Nipissing Forest 400 6 3 – –
1000 9 – – –

Subtotal 15 3 – 18

Total 46 31 28 105



A Vertex™ hypsometer was used to measure height to base of
live crown and total tree height for every tree. Heights of
hardwood species were measured in the leaf-off period dur-
ing fall 2005 and spring 2006.

The centre of each circular plot or corner post of each
square or rectangular plot was geo-referenced with a Trimble
Pro XT™ kinematic GPS unit connected to a Hurricane™
antenna, which was mounted on a tripod (Fig. 2). A mini-
mum of 300 points was collected for each post position and
later post-processed against a base station to achieve sub-
meter accuracy. In cases where not all corner posts could be
geo-referenced with GPS due to dense overhead canopy lim-
iting the incoming signal, a compass was used to sight
between plot posts to measure the bearing of the plot line and
a fibreglass tape used to measure plot size.

The 3 research forests chosen for this study offered differ-
ent forest ecosystems and silvicultural systems from which to
sample and predict forest variables. An effort was made to
sample extreme differences in density or basal area conditions
in order to test the capability of LiDAR to penetrate the asso-
ciated canopy conditions and its potential to model these
ranges of density and basal area conditions.

SLRF offered tolerant hardwood forest conditions from
no-harvest (i.e., natural old-growth areas) to stands that had
undergone silvicultural treatment using single-tree selection

methods. Additional conifer plots were also established
within the SLRF.

The PRF offered plantation, natural unharvested, and sil-
viculturally treated conifer stands. Plantations of different
species and initial planting densities, along with natural stand
controls and white and red pine stands treated with the uni-
form shelterwood system were sampled.

Three different site conditions were sampled within NF
including: (i) the Olrig site consisting of young yellow birch
stands exhibiting a range of residual basal area conditions; (ii)
the Phelps site consisting of an unharvested red oak condition
and a red oak uniform shelterwood treatment area; and (iii)
natural white pine conditions at Samuel de Champlain
Provincial Park.

The plot data were pooled for the 3 research sites, strati-
fied, and analyzed according to 3 different forest species
groups that included: (i) natural hardwoods, (ii) natural
conifers; and (iii) plantation conifers. These coarse groupings
were based primarily on species crown similarity (i.e., ran-
dom oval, random conical, and orderly conical) with the
assumption that LiDAR pulses would intercept each group in
a unique way. Species statistics for these groupings are pre-
sented in Table 2. Plot data consisting of individual tree data
were compiled to per hectare (ha) values using equations pre-
sented in Table 3.
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Fig. 2. Acquiring sub-metre plot centre position.
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LiDAR data
LiDAR data were collected in September 2005 using an
upgraded Leica ALS40 airborne laser scanner mounted in a
King Air 90 aircraft. The base mission was flown at 9000 feet
with a 20° field of view, scan rate of 30 Hz, and a maximum
pulse repetition frequency of 32 300 Hz. This configuration
resulted in a cross track spacing of 2.87 m, an along-track
spacing of 2.4 m, an average sampling density of 0.46 points
m-2, and a swath width of approximately 1 km. The LiDAR
point cloud data were classified as ground or vegetation by the
vendor using proprietary algorithms. LiDAR returns that
were classified as ground were normalized to the terrain using
a Triangulated Irregular Network (TIN). For each return clas-
sified as vegetation, the z-value on the TIN matching its x–y
coordinate was subtracted from the return’s z-value resulting
in a normalized height measure (metres above ground).
These normalized data were in turn used to generate various
LiDAR-based statistical, canopy height, and canopy density
predictors

LiDAR-based predictors
Three types of predictors, which included statistical, canopy
height, and canopy density predictors, were derived from all
LiDAR returns (i.e., classified ground and vegetation returns).
No height threshold was used to filter any of the point data.
The statistical group of predictors included mean height and
standard deviation, absolute deviation, skew, and kurtosis of
the distribution of LiDAR height measurements. The canopy
height predictors consisted of deciles of LiDAR canopy height
(i.e., p1 … p9; with p1 and p9 corresponding to the 1st and 9th

deciles, respectively) and the maximum LiDAR height. A
decile is any of the 9 values that divide sorted data into 10
equal parts with each part representing 1/10th of the sample
or population. For example, the 5th decile, also referred to as
the 50th percentile, 2nd quartile, or median, of LiDAR canopy
height would correspond to the height value where 50% of the
observations are found below and above it.

Eleven canopy density metrics were derived. For each plot,
the range of LiDAR height measurements was divided into 10
equal intervals and the cumulative proportion of LiDAR

returns found in each interval, starting from the lowest inter-
val (i.e., d1), was calculated. Since the last interval always sum
to a cumulative probability of 1, it was excluded resulting in 
9 canopy density metrics (i.e., d1 … d9). The remaining 
2 canopy density metrics were calculated as the proportion of
first returns divided by all returns intersecting a sample plot
(Da) and the proportion of first returns classified as vegeta-
tion (i.e., non-ground) divided by all returns intersecting 
a sample plot (Db).

Statistical analyses
Best subsets regression, a model-building technique that
identifies subsets of variables that best predict responses on a
dependent variable by linear or non-linear regression, was
used in this study. For each forest variable, the 4 best models
were identified for models that were based on 1 up to 10 pre-
dictors. For example, for a model based on 5 predictors, the 4
“best” predictors were identified and assessed.

A diagnosis of each model was performed to determine if
parametric statistical assumptions were satisfied. The
Shapiro–Wilk’s W Test was used to determine if residuals
were normally distributed, whereas the Modified Levene’s
Test was used to check for the presence of heteroschedasticity
(i.e., unequal error variance). In many instances, dependent
variables were transformed using a natural log transforma-
tion in order to satisfy these assumptions. Back transforma-
tions were based on the method described by Baskerville
(1972) where 1/2 of the squared residual standard error is
added to the estimate before taking the inverse log.

As LiDAR predictors have been reported to be highly cor-
related, the variance inflation factors (VIF) for the predictors
used in a model were examined (Neter et al. 1996). Candidate
models where predictors exhibited VIF greater than 10 were
discarded, as values above 10 suggest the presence of multi-
collinearity in the predictor data (Neter et al. 1996). The final
models (Table 4), in addition to the individual predictors used
in each model, were tested at the 0.05 significance level.

The cross-validation prediction of sum of squares (PRESS)
procedure (Myers 1986) was used to validate the models, since
not enough observations were available to permit the splitting
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Table 3. Ground metrics calculated from field data

Ground metric Description

TOPHT (m) Calculated as the average of the largest 100 stems per hectare

AVGHT (m) Calculated as the average height of all trees 10.0cm and larger.

DENSITY (stems ha-1) Number of live trees 10.0cm and larger expressed per hectare

QMDBH (cm) where n is stems per plot

SUMBA (m2 ha-1) DBH2 * .00007854 
Per hectare value calculated by summing each tree per plot.

SUMGTV (m3 ha-1) = ß1 * DBH2*(1-0.04365* ß2)2/( ß3+(0.3048 * ß4/Ht))
(Honer et al. 1983) Individual tree volume equation.

Coefficients varies by species 
Per hectare value calculated by summing each tree per plot.



NOVEMBER/DECEMBER 2008, VOL. 84, NO. 6 — THE FORESTRY CHRONICLE 833

Ta
bl

e
4.

M
od

el
re

su
lts

fo
r

th
e

na
tu

ra
lh

ar
dw

oo
ds

,n
at

ur
al

co
ni

fe
rs

an
d

pl
an

ta
tio

n
co

ni
fe

rs
fo

re
st

gr
ou

pi
ng

Sh
ap

ir
o–

W
ilk

’s
M

od
ifi

ed
Le

ve
ne

’s
Te

st
Te

st
PR

ES
S

R
M

SE
R

M
SE

Va
ri

ab
le

Eq
ua

tio
n

R
2

R
2 (a

dj
)

p
(%

)
W

p
t L

p
(%

)
N

at
ur

al
ha

rd
w

oo
ds

SU
M

BA
SU

M
BA

=
69

.0
-3

.8
8

ab
s_

de
v

-6
5.

0
D

a
+

1.
51

p7
0

+
29

.7
d6

-2
5.

2
d8

0.
82

0.
80

<
0.

00
1

3.
46

0.
98

0.
74

0.
12

0.
90

3.
99

(m
2

ha
-1

)
(1

7.
2)

(1
9.

9)
SU

M
G

TV
ln

(S
U

M
G

TV
)=

6.
56

-0
.1

56
ab

s_
de

v
-3

.4
4

D
a

+
0.

12
8

p7
0

+
1.

85
d7

-1
.9

0
d8

0.
90

0.
89

<
0.

00
1

39
.3

5
0.

97
0.

25
1.

54
0.

13
52

.0
3

(m
3

ha
-1

)
(2

1.
9)

(2
9.

0)
D

EN
SI

TY
ln

(D
EN

SI
TY

)=
4.

22
-3

.6
5

D
a

+
5.

57
D

b
-0

.0
36

3
p7

0
+

3.
04

d1
-2

.2
7

d4
0.

77
0.

74
<

0.
00

1
19

6.
03

0.
97

0.
38

1.
81

0.
08

21
4.

98
(s

te
m

sh
a-1

)
(4

3.
7)

(4
7.

9)
Q

M
D

BH
ln

(Q
M

D
BH

)=
2.

93
-0

.1
41

ab
s_

de
v

-1
.3

5
D

b
+

0.
10

1
p7

0
+

1.
58

d5
0.

82
0.

80
<

0.
00

1
3.

07
0.

97
0.

29
0.

02
0.

99
4.

17
(c

m
)

(1
2.

4)
(1

6.
8)

AV
G

H
T

AV
G

H
T

=
2.

41
+

1.
18

std
_d

ev
-1

.9
1

sk
ew

-0
.3

63
p6

0
+

0.
73

8
p7

0
0.

87
0.

86
<

0.
00

1
1.

10
0.

96
0.

12
1.

60
0.

12
1.

25
(m

)
(5

.7
)

(6
.4

)
TO

PH
T

ln
(T

O
PH

T)
=

2.
13

+
0.

02
42

p7
0

+
0.

02
25

m
ax

+
0.

19
1

d4
0.

96
0.

96
<

0.
00

1
0.

80
0.

97
0.

22
0.

11
0.

92
0.

89
(m

)
(3

.5
)

(3
.8

)
N

at
ur

al
co

ni
fe

rs
SU

M
BA

ln
(S

U
M

BA
)=

2.
17

+
0.

05
76

p5
0

+
0.

08
59

p8
0

-0
.0

88
7

m
ax

+
1.

22
d8

0.
82

0.
80

<
0.

00
1

7.
23

0.
97

0.
54

0.
74

0.
47

11
.4

6
(m

2
ha

-1
)

(2
3.

4)
(3

7.
1)

SU
M

G
TV

ln
(S

U
M

G
TV

)=
2.

63
+

0.
17

5
ab

s_
de

v
-0

.4
66

sk
ew

+
1.

74
D

b
0.

83
0.

81
<

0.
00

1
72

.9
6

0.
97

0.
64

0.
73

0.
47

10
6.

84
(m

3
ha

-1
)

(2
3.

2)
(3

4.
0)

D
EN

SI
TY

ln
(D

EN
SI

TY
)=

8.
54

+
0.

25
0

ab
s_

de
v

+
0.

07
83

p5
0

-0
.2

11
m

ax
0.

74
0.

71
<

0.
00

1
22

2.
27

0.
99

0.
94

0.
17

0.
87

61
1.

10
(s

te
m

sh
a-1

)
(4

6.
8)

(1
28

.6
)

Q
M

D
BH

ln
(Q

M
D

BH
)=

2.
27

+
0.

20
7

m
ea

n
+

0.
28

7
sk

ew
-0

.0
91

9
p5

0
0.

71
0.

68
<

0.
00

1
6.

93
0.

98
0.

88
0.

09
0.

93
10

.5
1

(c
m

)
(2

0.
1)

(3
0.

5)
AV

G
H

T
AV

G
H

T
=

13
.4

-0
.5

46
p5

0
+

1.
01

m
ax

-1
5.

6
d7

0.
78

0.
76

<
0.

00
1

2.
54

0.
96

0.
24

0.
70

0.
49

2.
85

(m
)

(1
1.

5)
(1

2.
9)

TO
PH

T
TO

PH
T

=
18

.8
+

0.
10

4
p5

0
+

0.
75

1
m

ax
-1

4.
5

d9
0.

96
0.

96
<

0.
00

1
0.

89
0.

94
0.

11
0.

95
0.

35
0.

99
(m

)
(3

.4
)

(3
.8

)
Pl

an
ta

tio
n

co
ni

fe
rs

SU
M

BA
ln

(S
U

M
BA

)=
1.

95
+

0.
11

5
p4

0
-1

.8
1

d4
+

1.
42

d7
0.

87
0.

85
<

0.
00

1
5.

33
0.

97
0.

65
0.

49
0.

63
7.

46
(m

2
ha

-1
)

(1
7.

0)
(2

3.
7)

SU
M

G
TV

ln
(S

U
M

G
TV

)=
2.

28
-0

.4
67

sk
ew

+
0.

15
6

p5
0

+
1.

66
d7

0.
92

0.
91

<
0.

00
1

40
.1

8
0.

99
0.

96
0.

20
0.

84
59

.6
9

(m
3

ha
-1

)
(1

6.
2)

(2
4.

0)
D

EN
SI

TY
ln

(D
EN

SI
TY

)=
6.

82
+

0.
48

4
std

_d
ev

+
0.

17
3

p3
0

-0
.2

14
m

ax
0.

76
0.

73
<

0.
00

1
25

7.
08

0.
98

0.
79

0.
82

0.
42

48
6.

99
(s

te
m

sh
a-1

)
(2

4.
7)

(4
6.

8)
Q

M
D

BH
ln

(Q
M

D
BH

)=
0.

25
9

+
1.

23
D

a
-0

.0
33

6
p3

0
+

0.
06

00
m

ax
+

1.
02

d9
0.

86
0.

83
<

0.
00

1
2.

34
0.

93
0.

07
0.

74
0.

47
3.

17
(c

m
)

(1
1.

4)
(1

5.
4)

AV
G

H
T

AV
G

H
T

=
3.

97
+

0.
38

8
ku

rt
os

is
-0

.2
94

p3
0

+
0.

95
0

p9
0

0.
98

0.
98

<
0.

00
1

0.
59

0.
96

0.
36

0.
12

0.
90

0.
71

(m
)

(3
.7

)
(4

.5
)

TO
PH

T
TO

PH
T

=
4.

27
+

0.
97

7
p9

0
0.

98
0.

98
<

0.
00

1
0.

.6
5

0.
97

0.
60

1.
03

0.
31

0.
75

(m
)

(3
.5

)
(4

.1
)



of the data into separate model development and validation
datasets. This approach to model validation is similar to apply-
ing the equation to an independent sample because the PRESS
residual is obtained for the observations that are not included
in the data when the equation is derived (Sun et al. 2003).

The procedure for calculation of the PRESS statistic is
undertaken by: (1) fitting a regression model through the data
minus 1 observation, 2) obtaining the predicted value of the
excluded observation, 3) calculating the residual for the pre-
dicted value (observed–predicted), 4) repeating steps 1 to 3
for the remaining observations, 5) calculating the sum of
squares of all residuals, and 6) deriving the PRESS statistic,
herein referred to as the PRESS RMSE, by calculating the
square root of the sum of squares of the residuals divided by
the total number of observations (Myers 1986).

Results and Discussion
Results indicate that LiDAR statistically based, canopy height,
and density predictors are suitable predictors of stand level
variables for enhanced inventory development for forest
groupings within the Great Lakes – St. Lawrence forest (Fig.
3–8 and Table 4). In addition, it appears that adequate models
can be developed from plot data covering a range of silvicul-
tural treatments and spanning large geographies even when
low sampling density LiDAR data (i.e., 0.5 hits m-2) are used.

An evaluation of low-density to high-density LiDAR data
for the prediction of boreal mixedwood stand attributes was
reported by Thomas et al. (2006). Results of the validation
efforts concluded that low- and high-density LiDAR models
were highly correlated with key forest structural attributes,
mean dominant height, basal area, and average aboveground
biomass (low density: R2 = 0.90, 0.91, and 0.92; and high den-
sity: R2 = 0.84, 0.89, and 0.91). Næsset (2004c) also found that
LiDAR density, as a function of flying height, had no statisti-
cal significance on the prediction of biophysical stand charac-
teristics derived from regression equations.

The broad species models developed for this study identify
the potential for further refinement of model predictions
based on more rigorous stratification and field sampling. The
results reported here are based on field data that were pooled
from across many geographic sites into strata arranged by
general species crown shapes. Field data were collected across
large gradients of age, height, basal area, density, species, and
silvicultural treatment to identify the capability of LiDAR to
penetrate various crown closure levels and to determine the
success of generalized forest variable predictive models.
Operational application of LiDAR for forest inventory would
involve more rigorous stratification of field sampling efforts
within a single forest being investigated (Næsset 2004a). As a
result, it is assumed that model predictions presented below
could be further improved within an operational inventory
context.

Top height and average height
Simple predictive models for TOPHT (i.e., the height of the
largest 100 trees ha-1) were developed for each of the 3 forest
groupings. The TOPHT model for all groupings performed
very well and as anticipated given that LiDAR pulses first
intercept the top (or near the top) of crowns within a plot
(Table 4; Fig. 3). The coefficients of determination (R2) for
natural hardwoods and natural conifers were 0.96, whereas a

value of 0.98 was obtained for plantation conifers. The range
of root mean square error (RMSE) values across all forest
groupings ranged from 0.70 m to 0.89 m (3%–4%). The
results reported here are consistent with those that have been
reported in the literature (e.g., Lim et al. 2003, Holmgren and
Jonsson 2004, Næsset 2004a, Rooker Jensen et al. 2006,
Thomas et al. 2006).

The larger error in the prediction of TOPHT for the natu-
ral conifer grouping (i.e., RMSE = 0.89) is assumed to be due
to the fact that TOPHT was calculated from field plot data in
stands that had undergone a uniform shelterwood silvicultural
treatment. TOPHT calculated from field data biased the
expression of TOPHT by utilizing the largest trees that were
left on site to be a residual seed source and as such, were
spaced around the experimental block. In some cases, large
trees were removed for the purpose of crown spacing, result-
ing in smaller trees being used to calculate an average TOPHT.
In general, TOPHT was over-estimated on these sites.

The prediction of AVGHT was generally poorer than that
for TOPHT (i.e., R2 values for natural hardwoods, natural
conifers, and plantation conifers were 0.87, 0.78, and 0.98,
respectively) (Table 4; Fig. 4). In many respects, these results
are expected given the variability in vertical structure charac-
terizing the various forest groups considered. The exception is
conifer plantations where the RMSE for the prediction of
AVGHT is comparable to TOPHT (0.59 m and 0.65 m,
respectively). Conifer plantations, differing from the other
species groups investigated, have a simple single-tier vertical
structure profile. The natural hardwood and natural conifer
conditions sampled in this study have a multi-tier structure
profile owing to their natural adaptive recruitment strategy
(i.e., gap phase replacement in a tolerant hardwood stand
developing a mixed-age and height cohort) or their human
manipulated structure from silvicultural activities (i.e., single-
tree selection or uniform shelterwood treatments). The rela-
tively low LiDAR sampling density (Fig. 9) may also have
contributed to the poorer performance of this model given
that there are fewer ground samples in stands with mixed-
species, mixed-height structures (Thomas et al. 2006).

Although larger than the RMSE values reported for
TOPHT, the reported RMSE values for AVGHT predictions
we are still deemed acceptable for stand inventory purposes.
The reported RMSE of 1.10m (6%) for hardwoods provideds
an indication of the range of vertical structure found nor-
mally in these multi-tiered unenven-aged stands (i.e., saplings
through to sawlog-sized trees). Natural conifers, weighted
heavily in the dataset by the influence of 10-year, post-treat-
ment white pine shelterwood plots with a large amount of
regeneration, reported a large RMSE of 2.54 m (12%). This
result is not surprising as these types of stand conditions
(refer to Fig. 9) consist of tall overstory trees and advanced
regeneration that will intercept LiDAR pulses. Conifer plan-
tations reported the lowest RMSE of 0.59 m (4%) as expected
with their simpler canopy structure. Researchers from other
jurisdictions have reported similar RMSE values for average
height model predictions (Holmgren 2003, Holmgren and
Jonsson 2004, Næsset 2004a).

Stocking (basal area and density)
The prediction of stand stocking attributes (i.e., density and
basal area) based on LiDAR predictors has proven more dif-
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Fig. 3. Top height (TOPHT) field observed values vs. predicted
model values for the natural hardwoods, natural conifers and
plantation conifers forest groupings.

Fig. 6. Density (number of trees) field observed values vs. pre-
dicted model values for the natural hardwoods, natural conifers
and plantation conifers forest groupings.

Fig. 4. Average height (AVGHT) field observed values vs. pre-
dicted model values for the natural hardwoods, natural conifers
and plantation conifers forest groupings.

Fig. 7. Volume (SUMGTV) field observed values vs. predicted
model values for the natural hardwoods, natural conifers and
plantation conifers forest groupings.

Fig. 5. Basal area (SUMBA) field observed values vs. predicted
model values for the natural hardwoods, natural conifers and
plantation conifers forest groupings.

Fig. 8. Quadratic mean diameter (QMDBH) field observed values
vs. predicted model values for the natural hardwoods, natural
conifers and plantation conifers forest groupings.



ficult than predicting height metrics (Stephens et al. 2007).
Basal area models developed for this study exhibit R2 values
of 0.80, 0.79, and 0.85 with associated RMSE values of 3.46 m2

ha-1 (17%); 7.23 m2 ha-1 ( 23%); and 5.33 m2 ha-1 (17%) for
natural hardwoods, natural conifers, and conifer plantations,
respectively (Table 4; Fig. 5). These values fall within the
range of RMSE values reported by other authors, such as

Drake et al. (2002) (7.15 – 7.88 m2ha-1), Holmgren (2003)
(4.8 m2 ha-1), Holmgren and Jonsson (2004) (3.0 m2 ha-1),
Næsset (2004a) (2.38 – 4.88 m2 ha-1), Rooker Jensen et al.
(2006) (3.1 m2 ha-1), and Stephens et al. (2007) (8.0 m2 ha-1).

Many forest management activities are driven by knowl-
edge of stand basal area. These include the selection of an
appropriate silvicultural system in combination with a pre-
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Fig. 9. Comparison of raw LiDAR hits of different densities for various forest stand conditions. Green dots indicate classified vegetation
hits. Purple dots indicate classified ground hits.

Natural tolerant hardwood Natural conifer shelterwood Conifer plantation

Photographic image

LiDAR density of 0.5 hits/m2

LiDAR density of 3 hits/m2



scribed thinning regime development. The performance of the
basal area model may be a function of the broad species
groupings combined with the wide range of stand spacing and
treatments sampled. The hardwood grouping includes toler-
ant hardwood conditions with a wide range of basal area con-
ditions along with varied structures (i.e., managed to old
growth). Many of the stands sampled were uneven-aged and
consisted of a wide range of size classes. This grouping also
included mid-tolerant hardwood plots (i.e., red oak and yellow
birch) some of which had recently undergone spacing and
uniform shelterwood treatments within 2 years of the LiDAR
acquisition. Plots dominated by intolerant trembling aspen
and white birch species were also included in this grouping.
Although the crown shapes of these species are considered
similar (i.e., random oval), measurable stand attributes, such
as basal area, diameter distribution and stand density, can be
very different for these tolerant, mid- and intolerant species
groups. These intolerant stands tend to exhibit a normal distri-
bution of stem sizes versus the inverse J-shaped curve of size
classes commonly associated with tolerant species. As a result,
variable potential for low- and mid-storey stems to be sampled
by LiDAR pulses in the tolerant species plots may be causing
different patterns than found in the intolerant-dominated
species plots with no significant understory.

Whereas volume predictions have been successful in a
number of studies, prediction of stem density has been shown
to be more problematic (Maltamo et al. 2004). The reason for
the discrepancy between volume and stem density prediction
has been attributed to the fact that the majority of the volume
is accounted for in the dominant tree layer (Vuokila 1980;
from Maltamo et al. 2004), which accounts for the dominant
component of the LiDAR data distribution. In this study, pre-
diction of stem density from LiDAR predictors was the least
successful application. RMSE values ranged from 196 stems
ha-1 (44%) for hardwoods, 222 stems ha-1 (47%) for natural
conifers, and 257 stems ha-1 (25%) for plantation conifers
(Table 4; Fig. 6).

Maltamo et al. (2003) addressed the problem of estimating
stem density by calibrating the estimates using theoretical
diameter distributions to describe small trees. However, this
modification for estimating stem density was applied to high-
resolution optical and LiDAR data in a single-tree approach.
Here, with the application of low-sampling-density LiDAR
data, a large RMSE for the natural hardwoods group may be
a result of the inclusion of trembling aspen plots. These plots
exhibit densities uncommon for the tolerant and mid-tolerant
species comprising the rest of the grouping, perhaps further
biasing the predictive model. A potential reason for the natu-
ral conifer model results may be the excessive variation in
species and/or vertical crown distribution. Many of the plots
had been silviculturally treated and now have a dense under-
story of regeneration present in the plots. Their associated
LiDAR canopy height and canopy density predictors along
with unharvested plot conditions may have caused noise in
the model development. It is anticipated that model perform-
ance could be improved given more dense LiDAR point data
(i.e., higher sampling point density).

Volume
Volume estimation for forest stands is a critical piece of infor-
mation required for strategic and operational modelling of
wood supply. Predictions of gross total volume resulted in

RMSE values of 39.4 m3 ha-1 (22%), 73.0 m3 ha-1 (23%), 40.2
m3 ha-1 (16%) for natural hardwoods, natural conifers, and
plantation conifers, respectively (Table 4; Fig. 7). The R2 val-
ues for the natural hardwoods, natural conifers, and planta-
tions conifers were 0.90, 0.83, and 0.92, respectively. These
results are in agreement with those reported by others (Holm-
gren 2003 [55 m3 ha-1], Holmgren and Jonsson 2004 [28 m3

ha-1], Næsset 2004a [13.9 – 45.9 m3 ha-1], Rooker Jensen et al.
2006 [23.7 m3 ha-1]).

Quadratic mean diameter
In addition to basal area and volume, knowledge of a stands
QMDBH (cm) provides key information to forest planners
and operational forest managers as it relates directly to hori-
zontal structure for habitat, expected product size distribu-
tions and associated harvesting efficiencies. Favourable
results from this study (RMSE values of 3.1 cm (12%), 6.9 cm
(20%), and 2.3 cm (11%) for natural hardwoods, natural
conifers and plantation conifers, respectively) support
LiDAR’s predictive ability to enhance inventories with key
attributes not normally found in current inventories (Table 4;
Fig. 8). Results from other studies support the ability of
LiDAR to predict QMDBH within this range (Drake et al.
2002 (RMSE = 3.74 cm to 3.84 cm), Holmgren and Jonsson
2004 (RMSE = 1.9 cm), Rooker Jensen et al. 2006 (RMSE =
9.3 cm)). As identified earlier in the discussion of the other
predicted forest variables, a more refined stratification and
modest increase in LiDAR density are expected to reduce the
RMSE values presented in this study.

Validation
As expected, the model validation resulted in an increase in
the resultant PRESS RMSE values when compared to the
model RMSE values (Table 4). Not surprisingly, only minor
differences were found through the validation of the height
estimation model for all forest groupings. Generally, the nat-
ural hardwood model validation effort demonstrated reason-
able stability in each of the derived models. The exception to
this is the density model in the hardwoods and also in the
other forest groupings. This result is not unexpected as this
equation represented the poorest model fits of this study. Bet-
ter estimates of density for all forest groupings may require
refined stratification or increased LiDAR sampling densities.
The natural conifer and the plantation conifer groupings val-
idation results showed similar trends to those of the natural
hardwood except that larger increases in RMSE generally
were observed. These increases are a function of using broad
forest groupings for model development and the extreme
range of density conditions targeted for plot establishment.

Conclusion
In the past 5 years, LiDAR has moved from the research arena
to operational reality in the area of forest resource inventory.
LiDAR has proven an efficient and accurate means to spa-
tially estimate stand height and forest structure (i.e., DEN-
SITY, SUMBA, QMDBH and SUMVOL) in support of statis-
tically based model predictions across a broad range of forest
types. Decreased acquisition costs, increased sampling densi-
ties, and enhanced inventory variable estimation have now
made this technology attractive to operational forest invento-
ries across a range of conditions. This enhanced capacity is
critical to decision makers for sustainable forest management.
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The results of this study clearly support the contribution of
discrete-return LiDAR data for the enhancement of forest
inventories for species groups in the Great Lakes – St. Lawrence
forest. It has been demonstrated that low sampling density
LiDAR data (0.5 hits m-2) provide acceptable levels of accuracy
for forest level attributes such as TOPHT, AVGHT, SUMBA,
SUMGTV, DENSITY, and QMDBH. In addition, the models
and results were based on a stratification of broad forest crown
shapes and field plots from multiple geographical locations.
Future studies will focus on developing improved models for
more precise forest groupings and identifying appropriate
ranges of LiDAR sampling densities to best predict this suite of
forest variables.
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